oy

NASA CONTRACTOR
REPORT

NASA CR-1338

LOAN COPY: RETURN TO
AFWL (WLIL-2)
KIRTLAND AFB, N MEX

VARIABILITY OF
SOUND PROPAGATION PREDICTION

DUE TO ATMOSPHERIC VARIABILITY

by C. Eugene Buell

Prepared by

KAMAN SCIENCES CORPORATION
Colorado Springs, Colo.

for George C. Marshall Space Flight Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION o WASHINGTON, D. C. « APRIL 1969



TECH LIBRARY KAFB, NM

LU

0060514
NASA CR-1338

VARIABILITY OF SOUND PROPAGATION PREDICTION

DUE TO ATMOSPHERIC VARIABILITY

By C. Eugene Buell

Distribution of this reportis provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Issued by Originator as Report No. KN-68-698-4

Prepared under Contract No. NAS 8-11348 by
KAMAN SCIENCES CORPORATION
Colorado Springs, Colo.

for George C. Marshall Space Flight Center
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technicol Information

Springfield, Virginia 22151 — CFSTI price $3.00



SUMMARY .

TABLE OF CONTENTS

INTRODUCT I ON [ . L] [ . L] L] L] - - [ . . ] - . [} L] L]

A.

MISCELLANEOUS RAY TRACING PROBLEMS, . . . . .

A Philosophy of the Ray Tracing Technique
Amplitude Intensity along a Ray . . . . .
Remark on Linear Layer Models , ., . . . .

Location of Caustics Aloft., . . . o« ¢ «

a) Calculation of 3x/3p _ for Successive
Ground Reflections. o . . . . « « . .

b) Location of Points 3x/3¢p =0 along the
Ray (Arithmetical Exampl8), ., . . . .

c¢) Caustics from the General Ray Method.

Comparison of Focus Factor
for an Ideal Example o« ¢« ¢ o ¢ o« ¢ o o @

SOUND INTENSITY FROM A MOVING SOURCE. . . . .

1.

Shocks Associated with Moving Source in a
Uniform Medium., . . « o« « o« ¢ o o o o o &

a) Vehicle Moving with Constant Speed, .
b) Vehicle with Constant Acceleration, ,

Factors Affecting Sound from a Moving Source,

a) Downward Sound Propagation, , . . . .
b) Directivity of the Moving Jet Source,

c) Coupling the Ray Tracing to the Source,

d) Doppler Effect (Uniform Case) ., . . .

e) Acoustical Coupling with the Atmosphere

Ray Tracing from a Moving Source, . . . .
a) Focusing Factor « « o ¢ ¢ o « o o o &
b) Reduction to Time Dependent Arrival ,

ii

Page

iv

11
16

19

19

21
25

32

39

40
41
41

46
46
48
51
52
53

56
56
58



TABLE OF CONTENTS CONT'D,

Page

c) Simplified System. . o« ¢« 2 o o o ¢ o o o o = 60
i) A Simple Example ., . o « « o o o o s o o 61

d) The Ray Tracing Terms. . . « o « o o o v o 64
i) The Distance Derivatives . ., . . . . . 64
ii) Special Case U = 0. . v ¢ ¢ o o o o o o 69
iii) The Time Derivatives ., ., . 4 ¢« o« o o & 71

e) Summary . . - . [} . [ . . . - . . . . L] . e . 73

f) Short-cutting the Ray Tracing Routine, . . . 77

REFERENCES. . . . . . . . . . . - . - L] . 3 o . . . o . . 79

iii



SUMMARY

This report is divided into two parts. The first covers
topics related to estimating sound intensity from a stationary
source in the natural atmosphere; the second covers some of
the problems of estimating sound intensity from a moving sound
source. In both cases the far field of sound propagation is

of primary interest (1. to 40. km).

The major results in the first part deal with (a) the
estimation of intensity by calculating a single ray and
associated parameters and (b) the method of locating caustics

above the ground. These two problems are closely related.

To estimate sound intensity at a point the rate of change
of distance to the returning ray with respect to initial
inclination angle is required. This may be obtained numeri-
cally from the distance of the returning ray when they have
been calculated for several rays, It seems desirable to dif-~-
ferentiate the integrals for distance with respect to inclina-
tion formally and compute these derivatives as part of the ray
tracing procedure. The formal integration, however, leads to
divergent integrals. It is found that if these formally
divergent integrals are integrated by parts, the resulting

integrals, though improper, are convergent.

The location of caustics for simple cases by algebraic
manipulation of the equations is relatively easy, but the
numerical processes required in an actual case lead to some
computing problems, These problems arise because for an
efficient ray tracing procedure integration over the largest
convenient layers is necessary. The caustics aloft tend to
appear near the reflection level (between the reflection
level and the next lower data level). Use is made of the
nearly improper character of the ray tracing integrals to

obtain the height of the caustics.

iv




The second part on estimating for field sound intensity
from a moving source contains a discussion of several items
to be considered that are usually omitted in the stationary
source situation. Most of these items can be included with
no problems., However, the calculation of the focusing factor
for a moving sound source presents grave problems (and is
a prime necessity for intensity estimates). 1In the first
place, it is necessary to calculate not only the horizontal
travel distance, but also the time of travel., 1If only this
is done, the intensity calculation requires extensive storage
of results and then interpolation (to put the ray picture
in terms of uniform arrival time) and numerical differentia-
tion (to get the focusing factor). The appropriate quantities
for focus factor calculations may be obtained in convenient
form from kinematical considerations of the propagation

process,
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INTRODUCTION

The first part of this report deals with qertain problens
involving ray tracing methods from an essentially stationary
sound source, though the results can be applied with suitable
modification to the estimation of sound intensity from a
moving source also. The principal results deal with the cal-
culation of sound intensity along a ray and the calculation

of the location of caustics (foci) aloft.

To calculate the sound intensity or focusing factor, it
is necessary to have available the rate of change of horizon-
tal travel with respect to the initial inclination angle of
the ray. If intensity at the ground is the only item of
interest, rays for several inclination angles may be computed
to ground return and the resulting intensity may be obtained
by numerical differentiation. When this is done, the effect
of caustic surface aloft is neglected., If intensity can be
calculated at various points along the sound ray, then intensity
at the ground may be determined with no further effort from
a single ray path (one initial inclination angle) and also
the presence and locations of caustics aloft may be computed.

The integrals to obtain horizontal travel may be differ-
entiated explicitly with respect to the initial inclination
angle and this derivative determined for points along the ray.
- The initial inclination angle occurs only in the integrand of
the ray integral. These integrals are improper but convergent
at every reflection layer to start with, but after formal

differentiation the results are improper but divergent at the



reflection level, Formal integration by parts results in
integrals that are again improper, but convergent. This
change of form of the basic equations permits intensity
evaluation along the ray as the ray tracing is carried out
step by step.

The transformed ray tracing integrals for these deriv-
atives clearly shows one of the reasons why the linear layer
model of the atmosphere is so unsatisfactory. The technique
of integrating by parts reduces the order of the discontinuity
of the integrand at the reflection layer but introduces into
the integrand the second derivative of the wind and speed of
sound with respect to height. This is exactly the quantity
handled in so cavalier a manner in the linear layer model of

the atmosphere,

The location of caustics aloft presents some problems,
These are expected to lie in an altitude range between Zn—l
and the reflection level. The ray travels an unusually
long distance in this layer. Their location is obtained by
using an approximate expression for the integral which gives
an explicit form for the altitude of the caustic on the ray
concerned. The horizontal distance to where this ray is
tangent to the caustic may be obtained by interpolation, but
is much more accurately found by explicit ray path integration
using the caustic altitude as the upper 1limit of the ray

integrals,

The estimation of sound intensity from a moving Source
presents many problems that can be omitted from consideration
for a stationary source. When the moving source is the
rocket jet, the source is highly directive, a factor that
cannot be ignored. This means not only that directivity must
be considered, but also the details of the sound ray azimuth
and elevation to the pitch and yaw of the rocket engine. Doppler
frequency shift must be taken into account. The coupling of
the sound and receiver source with the atmosphere cannot be
ignored because of the large altitude separations. These con-

siderations merely require adjustment of the stationary source
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results, The biggest problem is that of adequately eval-
uating the focusing factor itself.

In the stationary source case, differences in arrival
time from place to place can be ignored, They must be very
carefully included where the source is in motion. Thus time
of sound travel becomes a necessary calculation. It is pos-
sible to store all of the time and distance calculations for
all source levels in the computer, then reduce the results
to a fixed time of arrival at the ground by inverse interpo-
lation methods, and finally carry out the required numerical
differentiation to obtain a valid focus factor, The demanding
storage of this method may be eliminated by consideration
of the sound propagation kinematics. The result is that if
certain derivatives of distance and time with respect to ray
inclination and source altitude are calculated in the ray
tracing steps, these are then combined with the components
of the source velocity vector to yield a focusing factor
for each ray. The computation steps are not as complex as
it would seem because of some interrelations that exist
between the required quantities. This shortens significantly
the steps required.



A. MISCELLANEOUS RAY TRACING PROBLEMS

The items of this section comprise several topics of
importance for application of the ray tracing method.

The first section is devoted to a few words on the
basic difference between using a linear layer model of
the atmosphere and a model with smoothly varying tangent.
The burden of the discussion is not that the parabolic
model that we have used introduces additional "interpolated"
points, but that it is "smooth", a fact that shows up only
in the form of the integrals evaluated. We have had an

impression that this distinction has been misunderstood.

The calculation of the derivatives of the ray travel
distance with respect to initial inclination angle makes
it possible to calculate intensity from a single 'ray".
Otherwise a collection of rays is required. The routine
differentiation of the expressions involved leads to inte-
grals that cannot be evaluated. We have found a method that
can be applied easily without encountering this difficulty.
It requires integration by parts and consequent evaluation
of the derivatives of wind and speed of sound with respect
to height. Second derivatives of these quantities are re-
quired. These have infinite discontinuities at data points
and further emphasize the fact that the linear layer model
for the atmosphere is most inappropriate., This latter point

is illustrated in the third section separately.

The location of caustic surfaces aloft is reasonably
simple for elementary models that can be treated explicitly.
This is not the case for actual ray-tracing practice in the
atmosphere. The fourth section discusses these problems,
The major problem is in locating the ray envelope when data
levels are well spaced apart, A method of location is
developed that makes use of the infinite integrals of the

preceding paragraph.

The final section is devoted to a discussion of the
evaluation of the focusing factor at a focus for a particular

case,



1. A Philosophy of the Ray Tracing Technique

In any method of ray tracing, the problem is to obtain
a numerical solution to the differential equations for the
sound rays. There are many methods that can be used. When
interest basically lies in the sound intensity on the ground,
interest is confined to estimating the "size" of the ray
tube where it reaches the'ground, that is in the focusing
factor

£ = R%cos ¢o/r(dr/d¢o) sin Py

slant distance from source to receiver,

where R =
r = horizontal distance from source to receiver
0= initial ray tangent of the ray (at the source)

¢p= ray tangent of the ray at the receiver.

For practical considerations, there is little or no interest
in how the ray gets from source to receiver as long as the

focusing factor can be calculated.

Unfortunately, for most practical solutions of the
problem, the ray path is calculated in arriving at the
focusing factor. The reason for this lies in the fact that
it is reasonably straightforward to treat the differential
equations for the rays as an initial value problem.

In carrying out the solution of the initial value problem
for the rays the various techniques reduce to the approximate
integration through layers of the atmosphere which are assumed
to be homogeneous in the horizontal, but changing in the
vertical in a kndwn way. The ray equations are such that,
if the proper assumptions are made concerning the variations
of wind and speed of sound through the layer the quadratures
involved are exact. This leads to the possibility of using
rather thick layers and consequently to a considerable reduc-
tion in the numerical work of calculating a ray path. The
above is strictly true only in a stationary atmosphere. For a



windy atmosphere it is only approximately true. The wind
component along the ray plane and the speed of sound enter
the integrals in somewhat different ways so that exact
integration is scarcely possible or leads to exceedingly
complex formal integration expressions, However, it is
possible to separate the integrand into two factors, one

of which varies much more slowly than the other, This tech-
nique permits reasonably accurate integration over large
layers, in which the slowly varying part is assumed constant
and the exact quadrature for the more rapidly varying part

may be expressed rather simply.

The other alternative is to divide the atmosphere into
very thin layers and to use reasonably crude methods of
integrating over many such layers, In this instance, the

exact character of the ray path is of little or no importance.

We have pointed out that the linear layer model of the
atmosphere is inconsistent with the physical assumptions
behind the ray tracing technique and that the results obtained
from a linear layer model show certain peculiarities of the
rays, such as bifurcated rays at a maximum of the speed of
sound profile, that are inherent in the violation of these
physical assumptions. In order to overcome this difficulty,
the parabolic model was introduced. The use of a parabolic
model has the great advantage that the basic assumptions of
the ray tracing technique are much more realistically satis-
fied. 1In particular, the profile of speed of sound as a
function of altitude does not have the inherent infinite
point discontinuities of the second derivatives at the data
points, a characteristic that cannot be avoided in the

linear layer model,

The parabolic model has the virtues; (a) it is simply
constructed in a unique way, (b) it leads to easy separation
of the ray tracing integrand into a slowly changing factor
that can be treated as approximately constant and a factor
that changes rapidly but which may be integrated exactly,
and finally (c¢) it is easily controlled to represent the
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structure of speed of sound (plus wind component) as a

function of altitude.

Any other smoothly varying function of speed of sound
(plus wind component) versus altitude would be satisfactory
as far as the physical assumptions of the ray tracing method
are concerned, Some are reviewed briefly with the reasons

for their rejection.

(a) Standard interpolation formulas, such as LaGrange
interpolation either become too complex to manipulate handily
when the whole sounding is considered as a unit or, if
applied in a piecewise manner, do not preserve the contin-
uity of slope at the data points. In the first instance,
some 25 or more data points require a polynomial of 24'th
degree., This is not only silly in itself, but such a poly-
nomial is also not guaranteed to reasonably represent the
sounding in the sense that cases may occur where the inter-
polated values between data points would fluctuate wildly.

(b) Hermite interpolation may be used. This requires
that a slope be assigned at each data point. This can be
done handily by assigning as slope the secant across adjacent
nel = cn—l)/(zn+1 - Zn—l)' The
curve for the range from zZ, to zn+1 would pass through points

data values, (dc/dz)_ = (c
n

c¢c_ and c
n n+1

In this simplest case, the curve is cubic. (The wind component

with the assigned slopes (dc/dz)n and (dc/dz)n+1.

is omitted in the above expressions for the sake of simplicity.)
The integral for ray tracing, when separated into its slowly
varying factor and more rapidly varying factor, now becomes
difficult to handle. The factor to be integrated involves

the square root of a cubic expression. This can be integrated
in terms of elliptic integrals but to do so a cubic of the

most general form must be dealt with. The isolation and
evaluation of all of the real roots is a first step. Then

the location of the end point of the integration interval with
respect to all of the roots is required. Each of the combined
cases of root and end point locations leads to separate expres-

sions in terms of ellipitc integrals. Finally these elliptic



integrals are to be evaluated. The subroutines are not
generally available in software so that evaluation by

subroutines are required.

(c) Spline interpolation has the same disadvantages
as Hermite interpolation or worse. There are handy spline
methods, but the simplest is the cubic spline and we have
seen that the cubic polynomial leads to problems.

Note in the above that Hermite and spline interpolation
are objectionable only when it comes to evaluating the
resulting integrals. Both methods serve admirably to obtain
interpolated points from the sounding. But interpolation is
not the problem. The problem is the exact integration of the

radical that contains the interpolation function.

In order to obtain a simple quadratic interpolation
function that would go through the data points with given
slope, special additional points were interpolated at the

halfway levels, (z_ + z /2. The values assigned at these

points were fixed gy th2+iequirement that the jump of the
second derivative at these points be a minimum while the
parabolic arcs join smoothly (same first derivative). The
use of these additional points does not lie in any requirement
for more closely spaced information on wind or speed of

sound. There is no implication that the accuracy of the ray
trajectory is improved by using thinner layers. These points
would have been avoided had we seen any way of fitting the
parabolas without them. They were required to get a smooth

parabolic fit from layer to layer.

Parabolas can be easily fitted to the data points for
interpolation purposes but they generally do not conform
to the requirements., Parabolas fitted to points by threes,
(zl, Zg, z3), (z3, Zy, z5), (z5, Zg, z7), etc., will not
generally have common tangents at the join points, Zgy Zgy Zg,
etc., with the consequence that we are not better off than
before. Many other parabolic formulae were considered, aver-~

aged overlapping parabolas, etc., but none were satisfactory.



The interpolated points at which the parabolic arcs are
joined, the original data points, and the points at the apex
of the parabolic arcs, are used in the parabolic model for
ray tracing to determine limits of integrals and integrands
for the evaluation of ray traced distance under the assump-
tion that the sounding itself is a sampling from such para-
bolic arcs. 1In other words, the values that would have been
observed had many more sounding points been obtained would
lie on the parabolic arcs. It is obvious that this is a
fiction, but much less of a fiction than the assumption
that, had many more points been observed, they would all lie
on straight lines joining the few that were observed.

The interpolated midway points and the apex points appear
to augment the data somewhat (but in reality they do not).
There may be occasions when it seems reasonable to join the
original and augmented points by straight lines to improve
the interpretation of the sounding. We feel that there is
indeed some improvement when this is done. But it is as
incorrect to then use this augmented linear layer model for
ray tracing as it was to use the original data points in a
linear layer model. The reason is exactly as it was origin-
ally. Any ray tracing method in which the integrals are
evaluated as though speed of sound varies linearly with
height are physically unacceptable: the basic assumption of
a smoothly varying slope is violated at every point where the
straight line segments join together,.

If the parabolic model, or a Spline or Hermite interpo-
lation formula were used to compute the interpolated values
of speed of sound (plus wind component) at, say 10, or 100,
or 1000, intermediate points, and if a linear layer model
were used with integration over these individual finely divided
layers, then an approach would be made to the results of using
the parabolic model ray tracing technique. However, even in
this case there are some objections because of the lack of

continuity of the slope of the speed of sound as a function
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of height. When the calculations are carried out on a fine
enough scale, (i.e., very small angle increments) the
irregularity of the relation r=r(¢o), r=distance to ray
return, 0o = initial elevation angle would show up. Nothing
will eliminate these except treating the parabolic model in
the proper sense; of using the interpolation parabola in the
important radical of the integrand.
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2. Amplitude Intensity along a Ray

The amplitude of sound intensity as a modification of
spherical spreading is determined by the focusing factor, f,

2 .
I = Isphf, f = R cos ¢o/r(dr/d¢o)S1n Pps

where Isph

a sound source at O to a receiver location at P where the

is the intensity due to spherical spreading from

distance R is that of the line OP while the distance r is the
distance between the projections of O and P on the horizontal
plane, ®5 is the inclination of the ray at O and ¢p is the
inclination at P,

The term ar/a¢o in the focusing factor makes it impos-
sible to say anything about sound intensity from the geometry
of a single ray; it takes at least two rays to calculate or
estimate ar/a¢o. On the other hand, the value of ar/awo may
be calculated in the same manner as the ray itself., When
this is done then both the ray geometry and intensity along
the ray are known simultaneously. This kind of information
is needed if the ray tracing technique is to be modified to
take into account the effect of caustics and foci on the ray
paths since modification is required only at those levels or
regions where the focusing factor changes rapidly (or becomes
exceedingly large).

The following is an abbreviated analysis of some aspects
of the calculation of this factor.

The basic ray equations in the form

dx/dt = ¢ cos ¢ +u
dz/dt = ¢ sin o (1)
and Snell's law in the form
c/cos p+u = co/cos Oy + Uy = K = constant (2)

lead to the integral for the ray displacement in the horizontal
when penetrating a layer in the vertical
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Z
2
Xg = Xy = J [(c cos ¢ +u)/c sin pldz. (3)
Z
1

If the layer Zy,29 is completely penetrated, the phase normal
inclination, ¢, does not become zero within the layer and

the integral is perfectly proper. If the ray is refracted
earthward within a layer, Z, is the level at which the ray
becomes horizontal, In this case @(zz) = 0, and the integral
is improper. Under most circumstances the way in which

¢(zz) approaches zero is such that the improper integral is
convergent and may be evaluated by elementary methods.

(The exceptional cases are of no importance as far as the

problem being discussed is concerned).

It is obvious that one may obtain 3r/3¢ from
axz/a¢o - axl/awo by addition of values through the layers
penetrated. Using (3) for this purpose, the result is
Z

2
. 2 2 2 .3
axz/a¢o—ax1/a¢o = -(0051n¢0/cos ¢o) I [ (c+ucosp)cos p/c“sin"pldz
21
(4)
where use has been made of
d0/dp.. = c_si coszw/c sing cosZ (5)
P/ 9Pg 0", : Po
from (2), The integrand may also be expressed as
3/2
(c+u cosp)cosZp/cZsinp = Ke/[ (K-u)2-c?] . (6)

As long as the ray penetrates the layer (zl,zz) the
integral (4) is proper and is evaluated with no difficulty.

When z, is the level at which the ray becomes horizontal, then

2
© = 0 at that level and the integral is improper at the upper

limit. It is readily seen from (6), if (dc/dz)+(du/dz) is

not zero at the level Zg, that sing approaches zero proportion-

1/2

ally to (z2-z) and consequently the integrand behaves 1like

(Zz-z)s/z, This means that the integral is divergent.
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Another item that needs consideration is the fact that
at the crest of the ray, the value of zZ, is dependent on ©o-
In other words, the process of differentiating under the
integral sign to obtain (4) is no longer valid. To avoid
the difficulties, the process is started anew for a ray that
becomes horizontal at Zg. Let z* = z2—€ and consider the
limit for € - 0. Then

1im "
axz/a¢°-ax1/a¢° =€ -0 [(c cosp + u)/c sin¢]z*(az /a¢o)

. z, (7)
- €0 (e, sing /eos’o, l [eos®p(ctu cosp) /c?sin™>p]dz.
1

Since Zy = z2(¢o) is given by Snell's Law in the form

c(zy) +u(zy) = c_/cos ¢ + u,
then
2
— 4 i .
azz/awo = [co/(c + u )]51nwo/cos °,

and replace az*/a¢o by its limit, azz/awo so that the expres-
sion becomes ’

B . 2
ax2/2¢o—axl/a¢o = [c081n¢o/cos ¢o]z*
2
- éig l [coszw(c+u COS¢)/czsin_3¢]dz+{(u+c cosp)/c’+u’)ec sin¢}z
%k
1

The last expression contains two terms that become large in
the 1limit for €., Let the integral expression in the above

be indicated by I. If the variable of integration is changed
from z to ¢, then
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P
I=- I [ (c+u cosp)/(c’+u’ cos¢)][cos@/sin2¢]d¢
®1

and

P2
I = - [(c +u cosp )/cosp ] I [cosp/c(c(c’+u’)cospld(1/sinp).
®3

The last expression may be integrated by parts to give

Px
I= [(co+uocos¢o)/cos¢o]{[cos¢/c(c’+u'cos¢)sin¢]
®1
Z
_ E d COSp 'dz
Ll az c(c’+u'cos<p)>:| Sing }

where, in the second term on the right, z has been restored
as the parameter of integration. Then carrying out the dif-
ferentiation with respect to z in the integrand on the right
2 “2
. 4 4
I = [(co+uocos¢o)/cos¢o] {[cos p/c sin ¢(c’+u cosw)]z
1

z

] 2
+ [cosp(c’+u’cosp)/c sinp(c’+u’cosp) ]dz}.

2

The final 1imit to be evaluated then becomes axz/a¢o—axl/a¢o =
1lim

[e sin¢/cos2¢] €50 (A-B+C-D)
where
A = [(utc cosp)/c(c’+u’)sing] , ,
z
B = [(c_+u _cosp /co cosp/c(c’+u’cosp)si ,
0FU,C0S0/cosp T cose +u’cosp)singl,
C = [(co+uocos¢o/coswo][cos¢/c(c'+u'cos¢)sinm]z ,
1
z
D=

l *cos¢(c”+u”cos¢)/c sin2¢(c'+u’cos¢)dz.
1
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1

im _
€m0 (A-B) = 0 so that the

It may be readily verified that

final result is

ax3/a¢o-ax1/a¢0 = (cosin¢o/c052¢°)[(co+uocos¢o)/cos¢°]

x {[cos¢/c(c'+u’cos¢)sin¢]zl (8)

z
2
- j ECOS¢(c”+u”cos¢)/c(c'+u'cosw)zsin¢]dz}.
z
1

In the above the integral is convergent provided that the

denominator factor c¢’+u’cosp is not zero.

Another formulation for (8) is

3X,/30 ~3%. /30 =(c_si /cos2 ){K(K-u)/[(K—u)c'+cu’][(K—u)2—02]%]
2799, 1/ 99o o°1M0q ®

%

z
2

- i {K(K—u)[(K-u)c”+cu”]/[(K—u)c'+cu”]2[(K—u)z—czj}dz
1

where K is the Snell's Law constant from (2) and the explicit
dependence on u=u(z) and c=c(z) as functions of altitude is

shown.
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3. Remark on Linear lLayer Models

For the case u(z) = 0, the form

Z
2
arz/aK+ar1/aK = [K/c’ Kz-czjz - i {Kc”/(c’)zJKz-cz}dz
1
1

throws a significant light on the ray-tracing method. We
have pointed out previously that in the "linear layer'" model
the derivative 3r/d3K has an infinite discontinuity at each
point where the '"linear layer'" model changes slope, i.e.,

at each data point.

Consider the case in which the ray is reflected at
level Zg and let levels Zg be a data level, Then

a(rs—rl)/aK = B(rz—rl)/aK + a(rS—rz)/aK

and, on carrying out an integration by parts for the first
term along lines outlined in the preceding sections, one
obtains

3 (rg-r ) /3K = K/m, K2—02]Z1+ (1/mgg-1/m 5) K/ Kz-czjzz

Z z
2 5 3
- f [Kc”/(c')zJ%z—czjdz - L [Kc”/(c')2 Kz—czjdz
%1 2
= A+B-C-D
where A,---,D indicate the terms on the lines above in order,

The symbols m,, and My, Stand for ¢’ in layers (zl,zz) and
(z5,245) .

For a linear layer model, ¢” = 0 and myg, Mgg are
constants, generally different. 1In this model, C =D = 0.
Since the value of K is associated with c(z3) directly,

K=c(zs), so that for z; - 2z, then K - ¢, and since generally
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myg = Myg so that B - + «» depending on the sign of Mg = Mgg.

For the parabolic model (or any model with sufficiently
smoothly turning tangent) one must note that myq is no
longer a constant and that my, = cé, i.e., the slope of c(z)
at Zg, - Then one may write (parabolic model)

7 14
m = Cy + Cq (By-2,) + ——-
and note that 23 2 2 372
— — ' o —— o
K = K(Z3) = 02 + 02(23 Zz) +

so that

/Kz-cg = jk+c2 /k—cz = /2c20é(z3—zz)+ - .

Then 5/2
” 7
B = co(+) [e5(23-25)/ /2 (cg) ™ “4——-
so that 1™  B-0. Also D — O so that the only terms left

A
are A-C wﬁi

a(rz-arl)/aK given initially. The curve r(¢o) or r(K) is

Z
c% is exactly the same as the expression for

then one with a continuous tangent at the routine data points
where the slope of the curve c(z) is not zero. At the points
where ¢’ (z) = 0 the distance r(¢o) becomes large without

bound and the above <, analysis is meaningless.

In the more general case where wind component is also
considered the analysis is essentially unchanged. Thus, one

would obtain

a(r3—r1)/aK {K(K-u)/L(K-u)c’'+cu’] (K—u)z-c }z
1

{K(K—u)/[(K-u)c'+cu']J(K+u)2-c2}zz_

{K(K-u)/[ (K=u)c’+cu’] (K—u)2—02}22+

+

Z, Zg
_ i K(K-w)[ (K-u)c’+cu”’ldz _ K{K-u)[ (K-u)c’ +cu”’]dz
L
1

(K—u)c'+cu']2JkK—u)z—62 2[(K~u)c’+cu']2JQK—u§Z-cz

= A-B+C-D-E
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where A,---,E denote the corresponding terms in shorter

form. The symbols Zo- and Zo+ indicate that the expressions
are evaluated at Z, but in the first case with c’and u’
evaluated from below Zy but in the second case from above Zg.
c and u have the same value at z, whether approached from
above or below, The Snell's law constant, K, is dependent
on the reflection level, zg, from X = C(ZB) + u(zB). Then

C-B = {K(K—u)/J(K—u)z—cz}{l/[(K—u)cl + cu;]—l/[(K—u)c: + cu’]}

where the +, - symbols have been move to ¢’ and u’ and ¢ and u

are evaluated at z A bit more arithmetic gives

2.

C-B = Q[(K—u)(cl - c;) + c(u’ - u;)]/ (K—u)z—c2

where Q = K(K—u)/[(K—u)c; + cu;][(K—u)c' +cu’]. It is

readily seen that if X - c+u, i.e., 2, - zZ the large term

’
in the numerator becomes c[c’ + u’) —3(04 f u;)] which will
be non zero if the curve for c(z) + c(z) has a discontinuous
tangent at'z2 (a data point on a "corner"). At the same time
the radical in the denominator becomes large without bound.
The result is that the derivative of the curve r(@o) or r(K)
has an infinite discontinuity for values of ¢, or K corres-

ponding to reflection at the level Zg.

Similarly, if the curve c(z)+u(z) has a sufficiently
smoothly turning tangent at Zq the numerator will approach
zero more rapidly than the denominator so the result is

lim ¢ _ B) = 0.

23729



- 19 -

4, LLocation of Caustics Aloft

a) Calculation of Bx/3¢o for Successive Ground Reflections

In the usual method of ray computation the horizontal travel
of the ray, Xo=Xq, in the layer Zys Zg is calculated and added
to the sum of previous distances traveled. The result is that
only the total travel of the ray is available at any level,
say z , i.e., only X =X The ray is computed to the reflec-
tion level and then its distance is doubled to get the point
of return of the ray to the ground. To locate the position of
caustics aloft it is necessary to retain intermediate steps in
storage so that the whole process of the ray travel is avail-
able and to also keep track of axn/awo at the same time. This
is especially true for the descending part of the ray which is
usually not calculated at all. The following steps are required

for location of caustics.

Let zZ, be the altitude of the top of the layer within
which reflection occurs. Then by addition of successive layers

the following tabulation of steps occurs

Level CALCULATED DIFFERENCES ACCUMULATED SUMS
Distance Derivative Distance Derivative
zy X =X axl/a¢o X =X, Bxl/a@o
Zg X9=%y 9xy/06,=3%, /9%, X9=%, 0xy/03%,,
Zn-1 Xn-1"*n-2 axn-l/acpo_axn—z/ac‘oo Xn-1"%0 axn—l/aq)o

z* xk-x_ o 0x, /30 _-dx /30 X, —X 0X, /0P
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The usual calculation procedure stops at the last step, the
intermediate steps being discarded, and the accumulated sums
doubled (last line only) to obtain values corresponding to the

return of the ray to the ground.

The distance and derivative tables may be continued for the
descending leg of the ray and for the ray after successive
reflections from the ground. For the descending leg of the ray,
the symbols x'and z'will be used. Thus at the i’th level, on

4 . .
descent, Z, the distance is

'
X=X = 2(x*—xo) - (xi-xo)

and the derivative is
4
3x /30 = 2Qx%,/00.) - (@x;/3_) .
After k reflections from the ground the distance on the

ascending leg is

KXi%g = 2k(x*-xo) + (xi—xo) (1)

and the corresponding derivative is

0 o = )

15170y = 2k (0%, /00 ) + (3x,/09 ) (2)
while for the descending leg the distance is

kxi—xo = 2(k+1)(x*—xo) - (xi—xo) (3)

and its derivative

3, X1/30 = 2(k+1) @x, /39 )-(3%,/30,) (4)

For k=0, the results for the initial ray are obtained. When

k=1, 2,---, one obtains the results for the first, second, etc.,

reflections of the ray by the ground.
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b) Location of Points ax/amo = 0 Along the Ray (Arithmetical

Example
b ichdase) b
The problems involved in locating the points ax/awo =0
may be illustrated by an arithmetical example. Consider the
case of ducted rays along the ground from the speed of sound
profile ¢ = Co + UoZ- The circular arcs for the rays are given

by the equation

[x-(2k+1)'VK2—c02 /uo] 2, (Z+co/|.1.o)2 = (K/LLO)2 (5)
which may be solved for x to give
X = (2k+1)\/K2-002/M0 :t[(K/LLo)2 - (Z+Co/uo)2] 2, (6)

The - sign corresponds to the ascending leg of the ray while

the + sign corresponds to the descending leg. k = 0 corresponds
to the ray before ground reflection, k = 1 after one ground
reflection, etc. Only the arcs for which x 2 0 and z 2 0 are
considered. Holding z constant and differentiating with respect
to K, then

dx/OK = (2K+1)K/uo\/K2—c02 + K/|.Lo [(K/uaz—(z+co/up)2]%.(7)

This is converted into ax/amo by the relation

ox/39 _ = (3x/3K) (K/39 ) = K tan ¢ (3x/3K)

. — 2 2
and since K = co/coswo, cosp = co/K, tan¢o—JvK_-co /co, then
2 2/ 2 2 2 [ 2 2]%
= + - -
Bx/awo Ck+1)K"/u e £ KJK -c“/cu (K/1y) "=~ (z+c /ud 8)
The above corresponds to the values of Bx/amo that would be

calculated by the ray tracing integrals at the fixed levels

zZs when fixed values of z are substituted in the last term.
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The point of reflection at the top of the ray, Xys is

— 2 2
X, = (2k+1)'\/K -c, /uo

so that the displacement of the reflection point with respect

given by

to ©_is
o
Bx*/BCPo = (K‘\/Kz—coz/co) (Bx*/BK) = (2k+1)K2/cop.o . (9)

This is the first term of the expression for Bx/amo, Equation
(8). The expression for ax/a¢o then consists of two parts, the
first term corresponding to the rate of x-displacement of the
center of the circular arcs and the rate of change of the x-
coordinate of these arcs as reflected by their change of radius,

negative on the up-leg and positive on the down-leg.

This last term of ax/awo becomes large without bound as

Z approaches (K—co)/uo, the ray crest (reflection level).

Now consider the ray on the first ascending leg. Here
[2 2 [ 2 21%
x =K —c.” Tug = | ®))T - (ze /u)

and

2x%/0%, = (Kz/cop“o) l T K2"coz/“o [(K/co)z' (z+co/%)zl?l .

For the corresponding level on the descending leg, denoted by

’
X bl

, [ 1
x = Kz-co/p,o + [(K/co)2 - (Z+Co/uo)2] c

1
2x’ 20, = K2/e p,) { 1y 2 2/ | (K/co)z-(z+co/uo>2]f}
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so that

dx/30_ + 3x' /30, = /ey = 20x,/3% ),

ox/dp = 2(3x,/39 ) - (3x/3% ).

If successive ascending and descending legs are considered,

k > 0, the above would become
I —
ox /amo = 2(2k+1) (Bx*/amo) - (ax/amo)

where now (Bx*/awo)o refers to the initial ray for which k = 0,
while Bx'/awo and Bx/amo refer to k 2 0 (initial or ground
reflected rays).

The algebraic solution for the caustic in this particular

example is reasonably elementary. Let ax/amo = 0 so that
2 2]%~ 2 2
@k+1) [ ®/ug)? - (zre /i) =VkZ-c_? /u,

from which it follows that

2

L
2

2 = e/, + [(Kz/p.o)z - (K2—eo )/p,02(2k+1)2} )

(only the positive root has meaning for our problem). The

corresponding x-coordinate is obtained from the original

equations
x = (2k+1)'\/K2-002/u02 ~VE%-c 2/p (2k+1)
or
x = [@xe1) - eren) ] (VEEe 20
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where only the negative root has physical meaning for this

problem,

The above are parametric equations for the x, z coordinates
of the caustics in terms of the parameter K. For the original
rays, k = 0, there are no caustics but for k = 1, there is one
parameter family of caustics, K as parameter. All of the
caustics lie on the ascending legs of the rays after reflection

at least once from the ground.
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c) Caustics from the General Ray Method

In application to the practical ray-tracing problem the
preceding algebraic relations are not available and the only
recourse available is the sequence of values for kai/amo,
akx’i/amo. For the various levels i = 0,1,---- and for the
several ground reflections k = 0,1,---. It would seem reason-
able that all that is required is to inspect this sequence of
values for a change of sign. That this is not the case is
illustrated by the preceding algebraic example. The equations

are

Ascending leg:
_ 2 2 2 2 2[ 2 zlﬁ
akx/acpo (2k+1)K"/c_u, - K 'JK -c, /e gty K/ug) " =Lz+e /u ) ;
Reflection Point:

_ 2
akx*/amo = (2k+1)K /couo,

Descending Leg:
2 2 2 2 2 2 2]%
3 = - -
kx/acpo (2k+1)K /couo+K '\/ K~c /co“‘o l(K/uo) (z+co/uo) .

Consider what happens when z ranges from O tow/Kz-coz/uo=z*
and back to zero following a.single ray (K fixed) through its
various reflections:

Initial ray, k = O:

Ascending, 0 to =z aox/awo decreases from 0 to - <«

*7
= 2

Crest s Z = Zy, aox*/awo = K /cop,o

Descending, z, to 0, Box'/Bwo decreases from + ©

2
to 2K /cop,o
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First Reflection, k = 1

. 2 2
Ascending, 0 to z,, alx/amo decreases from 2K /cop,o to

- ® (A root for some z on this range)
2
Crest, z = z,, le*/a$o = 3K /cop,o
Descending, z, to O, alx'/6¢o decreases from + @
to 4K2/co|J.o

Second Reflection, k = 2

Ascending, 0 to z azx/amo decreases from 4K2/couo

*!
to = * (A root for some z on this range)
Crest, z = z 9,x,/93p = 5K2/c
’ k2 T 27k o oo
Descending, z, to 0, azx'/8¢o decreases from + «
2
to 6K /cou.o
The situation is illustrated in Figure 1 where z is considered

as a periodic variable.
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* 3 X/d0
0-:2\
azx*/awo
aox*a‘po
root
ASC r
0 z

*

0 pEsc 0 asc *  DESC
k=0 e —— k=1 +— A k=2 —-——b—l
Original | 1st Reflection 2nd

eflection

ARBITRARY PARAMETER ————

FIGURE 1. The derivative, ax/a¢o, expressed as a function of

an arbitrary parameter that increases indefinitely while altitude
oscillates between 0 and z. Lower part shows variation of z

from 0 to z, and back again. Upper part shows the infinite dis-

continuity of ax/a¢° at the points where z=z_,
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In terms of the ray tracing integrals, one evaluates for

the original ascending ray
z .

i
— 2 213/2
Boxi/aq)o—aoxi_l/acpo = -f Ke/ [(K—u) -c ] dz

Zi-1

K(K-u)/[(K-u)C'+CU']'\/(K'u)2‘°2 }z 1
n-

K(K—u2¥[(K—u)c”+eu”]dz

[ [(k-u)e'+cu'}2 v&—u)d-cd

4
n-1

3 Xy /30 -3 x

o n—l/a®o

Zx

zZ

and all other values of akxi/awo and ka*/awo are computed in
terms of these values by the recurrence relations of the
previous section. The first of the above expressions becomes
large without bound if z; approaches z,, the reflection level,
corresponding to the behavior of the z-dependent term in the
expression for Bx/awo of our elementary example. The finite
character of the second term of the second expression above
corresponds to the term independent of z in the elementary

example.

The basic problem is that inspection of the sequence of
values for a change of sign of kai/a$o is complicated by the
fact that this sequence also contains terms that are from a
function that has an infinite discontinuity and sign change
at each reflection layer aloft, but at that layer the finite

value ka*/a@o has been substituted. Since the sequence is
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at reasonably wide spacing of levels Zys it is quite likely
that no appropriate sign change will appear explicitly. To
locate the sign change it will then be necessary to make use

of the fact that axn_l/ Bwo- - o

The integral expression for the derivative difference

may be written as

z
f ch/ [(k-u)z-czl 3/2dz = F0 /[(K—u)z—cz ] _3/2dz = FOI
Zn-1

Zn-1

where Fo is a suitable average value for the slowly varying
factor of the integrand. If c(z)+u(z) = A+B(z—z#)2, the integra-
tion may be carried out explicitly. The integrals involved

may be reduced by considering the two cases:

> - > > >
B 0, K A 0, =z Z,1 Zy

I =, 1/(K-A)'\,/B

‘(z-z#)/ [(K-A)/B-<z-z#)2]*

- (Zn—l_z#)/ [(k-A)/B- (Zn_l—Z#)z J % l

< -A < < <
and B 0, K-A 0, zZ, 1 z Z

I =1 -1/(K-A)

{(z-z#)/ [(z-z#)z—(A-K)/(—B)] s

2 ]%
- @y _q-24)/ [ (2y_1-2) - AK)/ (-BY] % |
For the other possible cases, the ray would not have a reflection

level in the layer (zn—l’ zn).
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We are now ready to consider the sequences, i = 1, —-=--, n-1,

kai/5¢o: ascending after k ground reflections

akx'i/awo: descending after k ground reflections
for the possible location of caustics.

If either sequence exhibits a change of sign, this locates
the caustic between the two levels adjacent to the sign change
and no further analysis, except that interpolation for coordinates,

is required.

If no change of sign occurs, note the value of this
derivative at the reflection point, ka*/awo. If ka*/Bwo >0,
the caustic may be located on the ascending leg of the ray be-

tween the level Zn-l and the reflection level Zg. One now

extends the sequence into the layer (zn-l’ z,) by adding one

or the other of the integrals above to the sequence to obtain

3 %/3Py = 2k@x, /A0 ) + I(2) - I (2 ;) + 3xy_,/30
set this expression to zero, and solve for =z
I(z) = I(z,_4) - 3k(3x, /00 ) - ox, ,/3% .

The expressions for I(z) are of the form

I(z) = “(Z-Z#)/'VQ;:;;;E:;E-or a(z—z#)/W/éz—(z—z#)z

so one has, for example,

A (z-2,4) / \/(z-z#)z-az - Q
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so that
2 =z, + | -o%2/ %o,
If akx*/amo < 0, then the caustic is suspected to lie on

the descending leg. The interpolated value for the level of

the caustic, z, is determined from

3 x /3% = 2(k+l) (2%, /39 ) -1 (2)+L(z,_,)-0x, /30

in the same way as before.

The corresponding values of x for the caustic cannot be
accurately determined from interpolation from Zo1 to z, using
linear methods. The rays travel a long distance in level
(zn_l,z;). A better value of x may be obtained from the
original integral expressions for horizontal travel using the
z value at the caustic from the above analyses as the upper

limit.
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S. Comparison of Focus Factors for an Ideal Example

a. The Example

Consider a two layer atmosphere in which the speed
of sound is constant Cyo through a depth next to the ground
and above the layer increases with a constant rate dc/dz.
The sound propagation will take place in such a way that
there will be focusing. The basic relations are tabulated

without derivation.

The distance from the source to the point at which

the ray returns to the ground, r, is given byl)
ar/2N = tan 0, + p/tan o (1)
p = aH = (H/co)(dc/dz) (2)
a = (l/co)(dc/dz) (3)

and where ?, is the inclination angle of the initial ray and
N is one more than the number of reflections from the ground,
The location of the focus is obtained from the zero of dr/d¢o.

Since

a(dr/dp_)/2N = (tan®p_-p)/sin’p_ (4)

the inclination angle for rays at the focus is given by
-1
oy = tan "Jp (5)

and the distance to the focus is

r,= 4N/b/a = 4 NH//D | (6)

The focusing factor at any distance at which rays return is

given by

f = (tan2¢o+p)/(1+tan2¢o)(tanzwo-P) (7)
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Whether rays return at a given distance r is determined by
solving (1) for o3

tan o = (ar/4N) =+ [(ar/4N)2—p]i (8)

which must have positive values,

If distance is expressed in terms of the height of the
uniform layer, H, say £ = r/H, then the above relations con-
tain only the parameter p instead of both a and p

pE/2N = tan Py t+ po/tan ®gs (1a)
Ex = 4N/p, (6a)
tangpo = (p&£/4N) =+ [(PE/4N)2—p]%. (8a)

If the roots of (8) or (8a) are indicated by tan(p1 and
tan¢2, then at this distance two rays return so that the sound
intensities are added (incoherent noise is assumed). The
total intensity will involve the sum of the individual focus

factors which will then be given as the sum

f = fl + fz

where the right hand terms are from (7) using both of the
roots of (8) or (8a).

For reference later, the second derivative dzr/d¢§ is

tabulated here
2 2 4 3
d r/d(po = (4N/a)[cos ¢o(tan ¢o+p)/tan ol - (9)
The height of penetration of a ray into the upper layer

is of some interest in considering the physical limitations
that are involved. This is

Z-H = (H/p)[sec¢o-1] (10)

The conditions for the physical reality of the treatment
are given by

H >> (\2/472a)3
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or
p >> O\/H)2/4r2

(The first condition is stronger than the second, if in the

first the factor is 107!, the factor in the second is 10%3.)

b. The Field Near the Focus

The ratio of the field at the caustic to that at the

same point in an homogeneous medium is given by

/6

S=v(o)25 R exp{i[w/4+w(ga)—koR]}/[kron(z)tan¢osin¢pj%[82r/ag2]

(9)

and we consider only the focus or the intersection of the
caustic with the ground. Then R=r, Pp 0o n(z)=1 and the

focusing factor is given by

£ = |s|?

whence

5/3 2/3

f = [v/02][2 r/kotanwosin¢o(82r/agz)* ] (10)

The value of v(o) is 0,62927 = Jn/32/3F(2/3). The independent
variable, ¢, is given by ¢ = kOCOSpo. The second derivative

is obtained from
or/3g = (3r/d¢ ) (30,/3¢)
2%r/362 = (3%r/30,) (30,/38) %+ (3r/30,) (3% /3¢ %)

where

aqjo/ag = - l/kosimpo

az¢o/agz = - coswo/kisin'3¢o
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so that
or/3g = -(@r/3¢ ) /k sinp (11a)
2a%r/at? = [sing (3%r/ap2) - cosp (3r/30,)1/kosin™ g (11b)

Since the derivative is evaluated at a focal point where

ar/3p_ vanishes,
2 2_.
(621‘/85 )y = (azr/a(pi)*/koS1n2(po

and the focusing factor becomes

f = [(v/o)]2 25/3x1/3, cos ) /sin2/3¢ (dzr/dw 2)2/3. (12)
o o o o "%k
It may be readily verified that
d2r/d¢§ - (4N/a)cos¢o(tan4¢o+p)/tan3¢o (13)

Substituting into the above and using the expression for r to

eliminate N, the focusing factor becomes

£

[(v/0)1% 2%/3(k_rp)¥/(1ep)®
(14)

1 i
1.2574 (korp)a/(l+P)2

I}

It is pointed out that the field in the neighborhood of the
focus is proportional to v(t)/v(o) so that this field is

then represented by
2
£(t) = £{v(t)/v(o)] (15)
where t is the parameter
L 2 1
t = £2°(ar)/(3%r/3¢€) 3 (16)

The expression in the denominator of (16), as in (10),
comes from (11) and (13). Thus
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o = -k_sin%p_(dr/dp )3/20sing(a®r/dp)-cose_(dr/de )12 (24)

Applying (4) and (13) for the particular atmospheric conditions
considered

o = -2r (/A ) (N/p) (tan®p_-p)’sinp /[ tan’e_(2tan’e_-1)+3p1°.  (25)

In view of the asymptotic behavior of |[J(a)|, the fact
that ¢ - «» for X - 0 and |JC)| - 1 io give the geometric
approximation and o - 0 for ¢ - tan ~,/p (focus) so that
|J(a)l2* f, to give the focus factor in Section 2 have already
been noted.
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B. SOUND INTENSITY FROM A MOVING SOURCE

The several sections of this part are devoted to topics
that pertain to determining the ground intensity of sound
from a moving source. The source is thought of as a launch
vehicle following a near vertical trajectory. However, several
examples for other flight paths are used to illustrate some
particular point where a vertically rising sound source would

be inconvenient,

In the first section on shocks associated with a moving
source, the item of importance is the "following" shock that
is not usually considered. This shock, fortunately, is
extremely weak at the flight path intersection, but becomes
significant where it joins the '"Mach Conoid,' the surface
of revolution that would correspond to the Mach Cone in the

usual case,

The several factors that must be taken into consideration
for a moving source are briefly discussed together. Downward
propagatidn presents no problems here except that the rays
must reach the ground. The jet noise is of prime concern and
its pronounced directivity must be considered which implies
very careful coupling of the sound ray orientation and vehicle
orientation, The shift in frequency due to doppler effect
is a consideration that must be included, Acoustical coupling
of the source with the air would be important even for a
stationary source if there were a significant difference in
elevation between source and receiver, Since this is always

the case for a vertically rising source it cannot be overlooked,

The ray tracing procedures for a moving sound Ssource
(third section) are essentially the same as for a stationary
source, but the calculation of the focusing factor is totally
different. This lies in the fact that for a stationary source
the differences in arrival time can be overlooked. When the
source is moving, corrections must be made for arrival time
differences. These have been carried out as a part of the

ray tracing method as additional ray computations. There
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are other possible approaches, but a bare minimum requires
that travel time must be calculated, a quantity not essential

for the stationary source case,

1. Shocks Associated with Moving Sources in a Uniform Medium

The following sections are devoted to a brief survey of
the elementary geometry of shock waves from a vehicle moving
in a straight line. The case of uniform supersonic motion is
first considered to review the basic ideas, The case of a
uniformly accelerated motion more nearly approximates that
of a vertically rising aerospace vehicle. In this case the

shock configuration takes on a more complicated pattern.

Note that throughout we consider the vehicle that carries
the sound source as having no volume so that we are not consider-

ing "shocks" in the usual sense.

Shock waves from a moving sound sSource may be considered
as the envelope of the surfaces of constant phase, This
elementary concept starts with the equation for the spheres

of constant phase

[x—xs(t-f)]2+[y—ys(t—f)]2+[Z-zs(t—7)]2 = 22

where the center of the sphere is located at the sound source

with time lag 7

x_(t-7),y (t-1), 2z (t-7)

where t is the total time concerned. The radius of the sphere
is the speed of sound times the lag time, ctr, or the distance

traveled since emission.

If the first expression for surfaces of constant phase

is written in the form
F(r) = 0,

Then the envelope of surfaces of constant phase is obtained
by eliminating r between the pair
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F(t) = 0, 3aF(r)/at = 0.

To perform the steps required to find the envelope,
specific formulas for the flight path as a function of time
are required,

a. Vehicle Moving with Constant Speed

For a uniformly moving source, let Xg = vt, Yg = o,
zg = 0, so that

F(r) = [X—V(t—'r)]2+p2—0272 =0 (1)
and

3F(r) /o1 = 2{v[(x-v(t-r)]-c?r} = o. (2)
From (2)

2 2 2
T = v(x=-vt)/c“=vT) = M(x-vt)/c(1-M) (3)

where M = v/c. On substituting into (1)
(x—vt)z(l—M2)+p2 = 0.

If M < 1, this is not a real surface. If M > 1 the surface
is the Mach Cone.

b. Vehicle with Constant Acceleration

For an accelerated source Xg = at2/2, yg = 0, z4 = 0,

then

F(r) = [x-a(t-1)2/21%4p%-c%72 = o, (1)

and

3F(r)/ar = a(t-1)[x-a(t-r)2/2] -2¢%r = o. 2
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From (2),

X=a(t—r)2/2 + cZT/a(t—T) (3)
and using (3) in (1)

P = erla®(t-r)2-c®1E/a(t-r). (4)

The pair (3) and (4) are parametric equations of the envelope

in the parameter 7.

Differentiating these with respect to the parameter,

ax/dr = [t - aZ(t-1)31/a(t-1)? (5)
and
dp/dr = CEaz(t—T)S-czt]/a(t—T)z[az(t-T)2-02]% (6)
so that
2 2 2.1
dp/dx = (dp/dr)/(dx/dr) = —-c/[a”(t-T)"-c"]%. (7)

It is readily seen from (4) that the envelope is real
only if a(t-7) = c which corresponds to a vehicle flight
time at which the vehicle speed becomes supersonic (t=total
time, 7 = travel time of sound wave, t-7 = vehicle flight

time to time of sound emission).

Also from (4), p=0 at 71=0 and 72=t—c/a. In the first
case the shock is on the vehicle and forms an apex with half

angle ¢ where, from (7),

tanp = c/[aztz—czj%,
corresponding to the Mach angle for a vehicle traveling at
the same but constant speed. 1In the second case (7) indicates
that dp/dx = » so that this part of the shock is perpendicular
to the flight path, The location of this rearward shock,
from (2), is at

x = c(t-c/2a)
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or its distance behind the vehicle is
x—a2t2/2 = -(at—c)2/2a.

Both dx/dr = 0 and dp/dr = 0 at Tg = t—(czt/az)% which
corresponds to a local maximum of p and a local minimum of x,
but the expression (7) for dp/dx is well defined at tn.s
point and has the value

(dp/dx) = - [(at/c)2/3-1]'%
3
and also
x(rg) = (2/a)[ (3/2) (at/c)?/3-1],

plrg) = (c2/a)I (at/e)?/3-173/2

Thus the two branches of the shock meet in a cusp at this

point.

The shock configuration is shown schematically in

Figure 2,

(dp/dX)T3= -[(at/c)z/s—l]

F .
ollowing shock Curved equivalent of

T = t-c/a the Mach Cone
2
x(15)"=c(t~c/2a) tanp = c/./aztz-c2

p(Tg)' = 07 __k‘

= t-(czt/az)l/3

.
3

x(rg) = (¢?/a)[(3/2) (at/e)2 311

p(ry) = (c¥/a)(at/c)?/3 17372

FIGURE 2. Shock configuration for a vehicle moving

at constant acceleration in a straight line

in a homogeneous medium.
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The shock strength may be measured by the density of
T - points along the envelope. This is accomplished by
S = (dr/ds)?
where

(ds/dr)? = (dx/dr)? + (dp/ar)?

le2t-a(t-r)312/(t-1)2a2 (t-1)2-c27.

It is readily seen that S = o at 7 = T3 S =0at Tt = To and
S = t2/(a2t2-c2) at = 0, Thus the 'strongest'" shock is at
the cusp of the wave envelope and decreases to zero at the
center of the rear branch and to a finite value at the
vehicle location. The width of the line in Figure 1 roughly

represents this variation.

The shock forward of the cusp to the accelerating vehicle
is formed from the envelope of emitted sound in much the same
way as the Mach cone is formed for the vehicle in uniform
motion. (Of course, in the real case the shock is basically
derived from the air displacement of the vehicle itself and
its strength would depend on vehicle aerodynamics, but these
details are of no importance for the treatment here,) The
shock that crosses the flight path from cusp to cusp behind
the accelerating vehicle is the envelope of emitted sound
waves originating back to the time that the vehicle first
became supersonic and which have been "out run' by the accel-

erating vehicle.

The expressions summarized in Figure 2 for all of the
geometric properties of the shock configuration are dependent
on only the total flight time. While the vehicle is
accelerating, the point where the following shock intersects
the flight path moves only at one speed and consequently
falls farther and farther behind the vehicle. The edge of
the skirt of the '"cone'" or cusp point moves forward and
outward in a direction normal to the cusp tangent at sonic
velocity. Consequently it follows the vehicle motion with a
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component less than the speed of sound and falls behind even
more rapidly than the "following" shock on the flight path,
[Note, this elementary treatment neglects all such items

like the fact that shock speed is dependent on shock strength
and is somewhat unrealistic in these respects,]

' The implications for the transmission of sound from the
moving vehicle to the earth are reasonably apparent. Only
202y%1 of the
flight path can effectively be transmitted rearward. The

sound emitted within an angle of tan-l[c/(azt

rearward transmitted sound must pass through the "following"
shock, Near the vehicle axis this shock is negligibly weak,
but toward the skirt or cusp it becomes quite strong and may
modify the sound transmission.
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2. Factors Affecting Sound from a Moving Source

Several factors that must be considered in estimating
sound intensity from a moving source, but which may be

neglected when the source is stationary are discussed briefly.

The downward propagation of sound is subject to some
limitations due to the vertical profile of combined speed
of sound and wind component. It is possible for some rays
to be refracted upward and never reach the ground. As with
the source on the ground, some initially upward rays may

be refracted back down to the ground.

The directivity of the initial source is much more
pronounced for the moving jet noise source., This directivity
factor must be accounted for so that a ray on a given azimuth
and elevation must be tied to the jet engine. This requires
that engine pitch and yaw be known as a vehicle trajectory
parameter in addition to the coordinates and velocity compo-

nents.

As the souurce speed increases, doppler effects cause

pronounced shifts to lower frequencies,

The source and receiver are at widely different alti-
tudes so that density ratios (and speed of sound ratios)

modify the intensity calculations,

a. Downward Sound Propagation

One is interested primarily inm the downward propaga-
tion of sound from a rising vehicle, the limiting elevation
angle for phase normals at the vehicle is of some importance,
These limits are readily evaluated from the modified form
of Snell's Law. For an horizontal phase normal (and ray
tangent), ¢ = 0, so that

CcC+1u = C CcO u
+ o/ S, + Uy

for any particular azimuth. Sound source values are indicated

by the zero subscript. If then the value c+u exceeds Cotlys
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there will be some initial phase normal, oo satisfying the

above relation.

Let B be the largest value of c+u at or below the level
Zo of the source and let A be the largest at or above the
level Zo. Let ¢, or ¢p be the values of the phase normal
obtained from the modified Snell's Law with the values of
c+u taken as A or B respectively. The solution in the range
(0,7/2) will be considered. These values are all functions
of the source level, Zo. Then the rays may be classed as

follows:
1. -n/2 < 0 < - g descending rays that reach the ground
2. g < ®6 < 0 descending rays refracted upward
3. 0<@o<¢B, og < 0 ascending rays that are trapped

4, PP, <Py ©p < @y ascending rays that are refracted
’ to earth

5. 0<¢o<¢A, ©p < op ascending rays that are trapped

6. ©p < O©gys 0y < Op ascending rays that continue upward

It is readily seen that of the above 6 cases, only two
result in rays reaching the ground; Cases 1 and 4. Once the
values ¢pp and ¢, are obtained, it is sufficient to check rays
-1/2 < 0o < —0g and P < ©, < ©ps When op < @,, to locate
the phase normal range within which a ray will return to earth.
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b. Directivity of the Moving Jet Source

The mean square sound pressure radiated in the

direction | from a moving jet source is given by Ribner(4) as
4, 2,.3
_ 3wf(po)L 1+Mocos¢e
pz(x,e) 4ﬂzch2 (1—M§sin2¢)C5
where )
2 . 2 5 .2
cosy = cosw(l—MOS1n ¢)2—M051n ¥
and
2 2 . 2 .2 2
X (1—M051n V) = xe(l+Mocoswe)
and in which the symbols have the significance
we = radian frequency of turbulence in the correlation

exp(~wg|T])
= mean square sound pressure at the source

= mean sSquare sound pressure at the receiver

turbulence scale in the jet

= flight mach number

= (eddy convection Speed)/co = UJ./ZCo
= nozzle gas speed

= ambient speed of sound in the air

= angle from the jet axis to the observer (apparent)
= (apparent) source receiver distance

= effective source receiver distance

Q b n = 0 = = = o) X
@ o] o ) o] 2 N, 0 l\‘J
Il

= convection factor

The relations between X, Xgs e, ee are shown in Figure 3.
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Note that in this illustration the source is at A when
the sound is received at O and has apparently traveled the
distance x, Actually, the sound was emitted at E and traveled
the distance Xg- The distance traveled by the jet is AE = Uot*
whiie the distance traveled by the sound in the same time is
cot = X,

The convection factor is given by

2 2 2 2
c” = (l—MCcosw) + o M,
where
2 22, 22 22 _9
0" = wel /'ncoMc = 4wa /ﬂUj

and is a function of the jet nozzle characteristics. Mc is

the jet mach number M, = Uj/co‘

This may be written a bit more conveniently in terms of
effective angle and distance as

= 3w§(;g)L3/4wzchi(1+M0cos¢e)

po(x,{)

or in the usual standard form for an inverse square radiator

PT(x,V) ={3w§(pg)L3/4ﬂZCi x;2{05(1+Mocos¢e)}_1

where the first factor is an initial sound strength, the
second corresponds to the inverse square radiator, and the
last factor involves only the directivity of the sound source.
The angle ¢e is to be used in the expression for C.

The analysis summarized above for the mean square
acoustical pressure from a moving jet source requires impor-
tant modification for use in a non-uniform atmosphere. The
preceding results pertain to a uniform atmosphere. The factors
x;Z and (1+Mocos¢re)_1 of the last expression involve the sound
transmission through the atmosphere and should be deleted.

In their place one substitutes R™2 and £, where R is the
source receiver distance and f is the focusing factor, The
result is expressed as
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0]
OBSERVER

FIGURE 3

RELATION BETWEEN THE VEHICLE LOCATION (A),
THE ORIGIN OF THE SOUND (E) AND THE
OBSERVER (0O).
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P2(r,9) = [Bur(p) L3/aneic®1(2/8).
The directivity of the jet source is taken into account in C.
The focusing factor, £, will bear the burden of the effects
of atmospheric nonhomogeniety and source velocity. The
details required for computing the focusing factor under
these conditions are discussed at length in a separate section.

c. Coupling the Ray Tracing to the Source

The ray tracing picture is calculated indepdendently
of the source. To provide the correct input sound intensity
and frequency, the rays must be coupled with the local geom-

etry of the vehicle and its motion.

The ray parameters are 05 and 90, the altitude and
azimuth angles of the initial phase normal, respectively,
referred to an earth coordinate system in which the reference
plane (Xo, Yo) is parallel to the earth's surface and the Zo

axis is directed vertically.

If the vehicle is assumed to be oriented along the
tangent of the trajectory, then angle of the sound ray with

respect to the vehicle, |, is given by the formula
cosy = sinp _sinp  + coSwocos¢vcos(9V—90)

where 60 = sound ray azimuth angle
Py = sound ray elevation angle
6. = vehicle trajectory azimuth
Oy = vehicle trajectory elevation angle.

where the reference frame is an earth fixed system and § is
the angle that the sound ray makes with respect to the vehicle

trajectory.
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The vehicle orientation is not necessarily that described
above since for guidance purposes it does not always point
along the trajectory tangent. When such departures from the
trajectory tangent are appreciable, the vehicle orientation

angles should be used in place of ev and Oy above,

The angle of the sound ray with respect to the moving
vehicle is important since the vehicle sound source is
highly directional. Some details of these characteristics

are discussed in the next section.

d. Doppler Effect (Uniform Case)

The change of frequency of sound from a moving Source
as received by a stationary observer is well known. The
frequency of the sound as
received, ', is related to
the initial frequency on the

moving source by the relation
w' = «[1-(1/c) (dR/dt)]

where ¢ is the ambient speed
of sound and R is the distance
from the sound source at time
of emission and the receiver

when this sound pulse is ob-

served. Then, from Figure 4,

E -7+ VR/c. FIGURE 4
Geometrical Relations
Then in Doppler Effect.
dR/dt = dr/dt + (¥/c)(dR/dt)
Now dr/dt = -v where v is the (uniform) source speed so

that

dR/dt = -v[1-(dR/dt)/c]

and

R.(dR/dt) = R(dR/dt) = -(R.V)[1-(dR/dt)/c].
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Then
(dR/dt)[R=(R-¥)/c] = =(R-V)

and

(dR/dt)/c = -[ (R-2)/c]/[R- (R-¥)/c].

If R.v

Rv cos y, and v/c = M, then

w’ w/(l-Mcoswe)

Note that the angle y_ is the angle between the direction
of motion of the source v and the direction of sound trans-
mission that will arrive at the receiver. 1In the subsonic
case this is unique, but in the supersonic case there may be
two such.

The second sound source that would be heard by an observer
is not discussed here since it is physically nonexistent for
a vehicle that is rising on a nearly vertical trajectory. If
the vehicle were flying nearly horizontally it would be pos-
sible for both sound sources to be heard simultaneously. As
the shock passes the observer the sound would come from a
single source located at a point where the perpendicular to
the shock at the observer meets the flight path., This source
would instantly separate into two sources, one moving forward
and the other backward. The backward moving apparent source
is not effective for a ground observer in the case of a really

vertically rising vehicle.

e. Acoustical Coupling with the Atmosphere

The conditions along a ray tube are characterized

by the relation

—

- 2 2
PIVA/(P])Vg Ay = pac™/p19;0
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where symbols with and without subscripts refer to two
different points and

(;2) = mean square acoustical pressure

VS = speed of propagation along the ray tube
v, = |V |, Vo= ch + @

c = speed of sound

n = unit phase normal vector

w = wind speed vector

A = ray tube cross section

P = atmospheric density

q = cco/(c+wn)

c0 = reference speed of sound

L = projection of wind speed vector on the

phase normal
In a slightly different form
2 2 2
(07) = (P (A1/B) (p/py) (/) (e/e ) (Vg V)

The factor (Al/A) is handled by the ray tracing method. The
factor (p/pl), the ratio of air density at the receiver to

that at the source, is an easily obtained amplification factor.
The product of the last three factors is nearly C/Cl’ as
follows,

2 2 2
VS = C +2cwn+w

so ) 2. 1 1+Wn/c
(Vg czq)/(vsch) _ j 2w /ey)+ (W, /cy) 1 c
' 142w, /c)+ (w/e)* Liw_/c °;
2~ c/c1

since all terms w/c, wn/c are small compared with 1.
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Consequently the mean square acoustical pressure is approx-

imated by
2 2

where the last factor is a function of the atmospheric con-
ditions at the source and receiver only. The first factor
represents the initial source strength, including the direc~
tivity effects discussed previously. The second factor,

the ray tube area ratio, is the part that is handled by ray

tracing method.
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3. Ray Tracing from a Moving Source

The basic problem for ray tracing from a stationary
source is the estimation of the focusing factor which modi-
fies the intensity from the inverse square law spreading to
that of the rays curved and reflected by the atmosphere.

In the stationary sSource case, it is sufficient to consider
a "static" problem and disregard the fact that a "wave front"

arrives at different locations at different times,

When the moving source is considered, the focusing factor
must be put on a basis of simultaneous arrival of the sound.
In order to do this, we consider first a more general form
of the focusing factor. The general formulation of the ray
tracing method is analyzed so that the derivations concerned
are put on a total time basis, The detailed expressions for
the derivative terms are then considered and expressed in

terms of derivatives in which time is ignored.

a. Focusing Factor

The focusing factor may be defined as the ratio of
the area of a ray tube reaching the ground to that of a ray
tube that represents spherical spreading. The tube area

for spherical spreading is
2
AS = Rcosp Ap A D
where R is the source-receiver distance, ¢ is the ray elevation
angle, and 0 is the ray azimuth angle,

At any given instant, the ray has coordinates

given by

X((p,e 7'), Y((D,B,T), Z((D,e:T)

which represent points on an expanding surface where (¢,0)
are coordinates on the surface., For constant (p,8), the ray

point moves along a Space curve with parameter 7. The vector

3x/dT1, dy/ot, d3z/3t: velocity vector
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is the velocity vector along the ray. The vectors that are
tangent to the surface are given by

]

3x/3¢p, 3y/dv, 3z/3¢p : tangent to curves 6 const.

2x/56, dy/36, 3z/30 : tangent to curves ¢ = const.

The ray tube intersects the ground in a mapping of the
source coordinates (¢p,0) onto the ground. The intersection
of the ray tube with the ground is identified with a quad-
rilateral determined by the points x(p;0), y(0,8); x(o+Xo,0),

V(x+&p,0); x(0,6+40, ¥(p,0+A0); and x(p+Ap,0+A8), y(p+lp, 6+A8).
These points are all associated with different times of arrival

if the sound is initiated at a single time. Conversely, the
same situation holds if the mapping of sound emission coordinates
(p,8) on the ground is viewed at a single total time, but in
this case the sound is emitted at different times for each
point.
The area of the ground intersection is found from the

usual differential approximation

Ag=(r(pxre)A(pA9 = [(3x/23¢p) (3y/36)-(3x/38) (3y/3¢) 1 XpA0.

It is necessary to correct this by multiplying by the
sine of the inclination angle of the ray, ¢p, to obtain the

area of the ray tube itself. Thus
A=A si .
g~ Py
is the area of the ray tube as it reaches the ground.
The focusing factor is then given by

£ = Ag/A = |R%cosp /[ (3%/20) (3¥/20) - (3x/28) (3y/30) sinp | (1)

where ¢, = inclination angle at the source, 0y = inclination

angle at the receiver.
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b) Reduction to Time Dependent Arrival

The preceding section on the focus factor was
expressed in terms of the simultaneous arrival of sound
everywhere on the ground. To facilitate computation, it
is helpful to express the focusing factor in terms of
quantities obtained for simultaneous emission time, The

ray equations are used for this purpose.

In general form

x = X(t) + x(Z(t), @, 6) @
y' o= Y(t) + y(&(t), o, 0) (3)
T = 7(Z(t), o, B) 4)
T =%t + 71 (5)

where X(t), Y(t), Z(t) are coordinates of the source at
emission time t, x, y, are the coordinates of the ray with
inclination ¢, azimuth 8, with respect to a stationary source
when it reaches the ground. The travel time 7 is computed

as from a stationary source from (4). The total arrival

time is given by (5).

Then
3x /30 = (3t/ap)[0X/at +(3x/3Z) (3Z/3t)]+3%/20
35 /30 = (3t/36)[3X/3t +(3x/3%) (3Z/3t)]+3%/36
ay*/aw = (3t/3¢)[3Y/3t +(Ry/3Z) (3Z/3t)]+d3y/3¢
a7 /38 = (3t/38)[3Y/3t +(37/32) (3Z/3t)]+3y/26

The first factor of the first term may be determined from (4)
and (5)

so that for T = constant

-3t/3p = (3T/3Z) (3Z/3t) (3t/3¢p) + 3d31/30,

-3t/36 (371/32) (32/3t) (3t/36) + 3t/36,
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or
3t/ = -(37/3¢)/[1+(37/3Z)/(3Z/3t)],
d3t/38 = -(37/236)/[1+(37/32)/(d3Z/3t)].
whence
3%, /3¢ = 3x/3p~(d37/3p) L (3X/3t)+(3%x/32) (32/3t)]/T1+(37/32) (3Z/3t)]
3%,/36 = 3x/306~(37/36) [ (3X/3t)+(3%x/32) (3Z/3t)]1/(1+(37/32) (3Z/3t)]
d3Vx/3p = 3y/3¢~(37/3p) [ (3Y/3t)+(dy/32Z) (3Z/3t)1/L1+(37/3Z) (3Z/3t)]
3V, /36 = d3y/36-(37/30) [ (3Y/3t)+(3y/3Z) (3Z/3t)]/[1+(37/32) (3Z/3t)]

If one writes U = 3X/3t, V=3Y/3t, W=3Z/3t, then

3%, /3¢ = 3x/3¢p-(37/3¢) (U+W3x/3Z) /(1L+WaT/3Z)
3%, /360 = 3%x/36-(37/38) (U+W3x/3Z)/(1+WaT/3Z)
3V /30 = 3y/3p=-(d37/3¢) (V+W3y/3Z) / (1+W3T/dZ)
0Y4 /36 = 3y/30-(371/36) (V+W3y/3Z)/(1+WaT/3%2).

Note that U, V, W are evaluated at the emission time t rather
than at the total time T. The first terms, 3x/3p,---,3y/%8
are evaluated from the rays as computed from the ray trace
method neglecting vehicle motion (stationary source at X,Y,Z).
The terms 37/3¢,dr/38 are computed from the same only the
sound travel time is required. U,V,W are the vehicle velocity
components. The terms 3x/3%Z, 3y/3%Z, 31/3%Z are changes of
ground coordinate and time per unit change of the source
height. Thus, five ray tacing quantities are needed in addi-
tion to the usual terminal ray coordinates: d37/3¢p, 37/38,
3x/3%Z, d3y/3Z, 3T/34%.
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c) Simplified System

If the rays are propagated in a plane, then one

can write

x = r(Z(t),p)coso,
y = r(z2(t),p)sing.
Then
3x/3p = (dr/dp)cosh,
dy/dp = (d3r/3¢p)sing,
3x/36 = -r sing,
dy/36 = r cos8,
3%x/3% = (3r/3Z)coss,
dy/3Z = (3r/d3Z)sing,
3t/38 = 0,
so that
3%, /3p = (3r/3¢p)cosb-(37/3¢p) (U+W(3r/3Z)cosb)/(1+WaT/3%),
3V, /30 = (dr/3¢)sing-(37/3¢) (V+W(3r/3Z)sinf)/(1+Wor/32),

0%x,/38 = ~-r sing,
dy,/36 = r cos6.

The denominator factor in the focus factor (1) involving

these derivatives becocomes

(3%, /3p) (3y,/30)-(3%,/30) (3Y,/3p)=r[3r /3¢~ (37 /3p)W(dr/3Z) / (1+W3T /32Z)]

-r(37/3¢) (Ucosf+Vsing)/(1+Wat/d>Z)
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The factor of the second term which involves the azimuth
is exactly the horizontal component of source velocity in
.the azimuth plane of sound propagation. This term is
replaced by UG so the expression shortens somewhat to

lr@@r/3p )]g = Br/atp-(a’r/atp)(UG—WBI'/BZ)/(1+WBT/BZ)] (6)

in which all quantities are found in the azimuth plane of

propagation., It is readily seen that if U =W = 0, station-

ary source, the factor above reduces to r(3ar/3p) and the

focus factor is of the standard type for a stationary source.
The full expression for the focusing factor is then

f = choS¢o/[r(ar/a¢o)JTs1n¢p (7)

where by r[dr/dwo]T is meant that the expression is to be
evaluated as above at constant arrival time.

i) A Simple Example

Consider a source moving with a velocity U parallel
to the ground at an height H. The parametric equations for

a ray point are

X = Ut+ctcosp
z = H - crsing
T = t+71

where t is the time of emission of sound, 7 the time of travel
along a ray path, T the total time and ¢ the angle of emission
measured downward from the source path. The sound reaches

the ground in a travel time 7 = H/c sinp determined by z = 0

and solving the second relation for r. The time of emission
along a ray with initial angle ¢ is obtained from t=T -H/c sin ¢.
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These expressions for t and 1 substituted in the first
equation give the expression for ground coordinate of
arriving sound at total time T as a function of the angle

of emission, ¢

x = UT + H(cosp - M)/sing

where M = U/c is the source Mach number.

The focusing factor is
2 .
f = |R cosm/x(ax/a¢)T51mp|

where (ax/a¢)T is calculated on the basis og simgltangous
arrival time T and it is to be noted that R™ = H™ + x
where x is calculated on the basis of the horizontal travel
distance in the time 7. Thus, X = cT cosp = H cosp/ sing

and R2 = H2/s1n2¢. It is easily verified that

(x/3¢)p = —H(l-Mcosw)/sin2¢
and so
£ = 1/|1-Mcosop|.

For subsonic speeds the focusing factor is largest for =0,
1/(1-M), and smallest at ¢o=r, 1/(1+M) and has the value 1

at ¢=n/2. 1In general, f, decreases monotonically from ¢=0

to ¢o=m so that the sound at the ground is of larger intensity
ahead of the source and of smaller intensity at some distance
behind the source than would have been the case for a station-
ary source. Note, however, that the crossover point is not
beneath the source at time T (closest distance), but at a
distance HM behind the source position UT (by substituting

©=0 in the expression for x ),

In the case of supersonic speed, the focusing factor

becomes large without bound at cos ¢ = 1/M or at a distance

H Mz-l behind the source. This corresponds to the intersection
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of the Mach cone with the ground. Note further that the
expression for x_, contains the fact that to the rearward
of the point M -1 behind the present location of the
source, UT, each surface point receives sound from two
different angles P1s Pg- This is readily seen from the
expression for x which is large and negative for small ¢
and for ¢ near q. As ¢ increases from 0 to cos_l(l/M)

the point x moves from -« to UT- M2—1 and as it increases
from cos_l(l/M) to 7 the point x retreats again to -,

The above simply arithmetical example presupposes
knowledge of the ray path which is used extensively in the
manipulations. To compute the focusing factor without using
such extensive knowledge, we consider the focusing factor

as derived previously
2 .
f = |R COS@O/[r(Br/B¢O)]T81n@p‘

where

Lr(3r/3¢ ) lp=rldr/sp = (37/3¢ ) (War/3T + U.)/(1+Wat/3Z)].
In this simple example, W=0, Vr=V so that

lr®r/sp )]qp = rl3r/3¢ - Uar/3¢]

and Cp = Pp = @ If the source were stationary, the ray
intersections with the ground would be given by r=H coto and

the time of sound travel would be given by t = H/c sing.

These are quantities that would be calculated by the ray

tracing method in the stationary source case., Then

3r/d3¢p = —H/sin2¢, 37/3¢ = -H cosp/c sin2¢ and R2=H2+r2=H2/sin2¢.
Substituting these expressions, the focusing factor becomes

f =1/|1 - M cosp| as before.
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d) The Ray Tracing Terms

The terms required from ray tracing procedure are
thence ar/awo, dr/3Z, BT/a¢o, and 37/3Z. The source motion
implies that time of sound transmission is required. Both
radial distance and sound travel time are differentiated
with respect to the initial ray inclination and the source
height. These are the two basic parameters that enter into

Snell's Law constant

K = co/coSqoo + u, co=co(Z), uo=uo(Z).

Since the Snell's law constant is the only place where these
initial conditions occur, the derivatives can be replaced by
derivatives with respect to Snell's Law constant, K, and the

other derivatives computed using an appropriate factor. Thus

ar/3p, = (3r/3K) (3K/3¢),
dr/3Z = (3r/3K) (3K/3Z),
3T/3¢, = (37/3K) (3K/30 ),
37/32Z = (37/3K)(3K/32).

One then needs or/3K, 37/0K and the derivative factors,
aK/a¢o,aK/az. It is readily seen that

aK/awo = cosin¢o/cos%po,

7/ 7
dK/37Z co/cos¢o+uo.

i) The Distance Derivatives
The ray integral through a layer

z
Xp=Xq = L 2[(0 cosp +u)/c singp]dz (8)

1

is transformed using Snell's Law

c/co u = C_CcoS u_ = = constant
/ S+ o o) 0o + o K o
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or
cosp = c¢/(K-u), cosp = co/(K—uo) (9)
into z
2 2 2 2
Xg=X, = i {[eZru(k~-u)]/c 4 (K-u)2-c?}az. (10)
' 1
The relation between 0ys K, and Z, permits the following
3-/3p, = (3-/3K) (3K/3¢,), (11)
3-/3%, = (3-/3K) (3K/22 ), (12)
where
aK/awo = coSin¢0/0052¢o’
aK/azo = cc')/cos<p0 + ué,
and
’ r o r
cl = aco/azo, u = auo/azo.

Consequently, once axz/aK - axl/aK has been obtained, the
expressions for 3x,/3¢ - 3x;/3¢p  and 3x,/3Z - 3%,/3z

are easily obtained by using the appropriate multiplier,

The differentiation of Xo=%Xq with respect to K involves two
distinct cases depending on whether or not the ray is
reflected at the upper limit of integration. If no reflection

occurs at z i.e.,, the ray penetrates the layer (zl,zz), the

2’
upper limit, Zg, is fixed and the parameter K is contained only

in the integrand.

CASE 1: z, independent of K (ray penetrates the layer
(zl,zz). Then, if Ax = Xg=Xy

Z
3 (Ax) /3K = i 2[a{[c2+u(x-u)]/c‘/(K-u)z-cz}/aK]dz
1
or
Zo 9 o 3/2
2(ax) /3K = - [ {xe/[ (k-u)2-c?] ' }dz (13)

21
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In this case the integration poses no problems since the
integral is proper through the entire layer,

When reflection occurs at Zg, the upper limit of the
integral is also dependent on K so that another term is

involved.

CASE II: Z, depends on K (ray reflected at zz). Then
formal differentiation leads to

d(Ax) /3K = {[cz+u(K-u)]/c (K-u)z-cz}Z2 3z45/3K

z

2
- i [Ke/ /(K=u)2-c2]dz

1

It is readily seen that, since K-u = c at z,, both terms
of this expression are meaningless at that level. To avoid
this difficulty, reduce the range of integration by a small
amount, €, so that the upper limit becomes zz—e and consider
the limit for € - 0

1im lim
€ -0 3(AX)/3K = =z, - z, [A-B] (14)
where
2 5 2
A = {[c"+u(K-u)]/c \/(K-u)“-c"}, (3z,/3K),
*

Zx

B =K f {c/[(K—u)Z—cz]%}dz.
2

Since 3z,/3K = ¢’+ u’evaluated at z,, then

*?

([ e2su &-w) 1/ ®-0)2 -e2 e’ +u")}, (15)
*

A

The integral in B requires some manipulation, This is integrated
by parts. Note that

_gZ { ®-u)/ V(K-u)z-c2 } = c[(K—u)c'+cu']/[(K-u)2—c2 3/2
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so that Zy

p-l __x

zy (K-u)c'+cu'

Z
*
= [K(K-u)/[ &-u)ec'+cu’] V (K-u)2-c2]
z

V-4

1
*

_-j K-u d K dz.
z (K—u)‘—cd dz (K—u)c'+cu'

Let B be written in the form B=C-D+E where

-
Cc = | K@&=-u)/[ K=u)c’+cu’] (K—u)z—cz] , (16)
z
. *
D =| K(X-u)/[ (K-u)ec’+ cu'}V(K—u)z—ch , (17)
- Z, Z1

=
l

_ _f K-u 13 K >]dz , (18)
z, V(K—u)!—c Z (K-u)c'+cu'

so that (7) becomes

1im lim lim
€= 0 [d(x)/K]l= =z, - z, (A~C) + D - z, ~ z, E. @a9)
The first term on the right of (19) requires some manipulation.

Thus

Q‘(K-u)z-cz(A-c) = [e?+u(K-u)]/c (e’ +u’)=K (K-u)/[K-u)c’ +cu’]

whence on combining fractions and simplifying

(a=cy = - L ®=w) (c=u) + u'c@ure)]VKu—c

c(c'+u')[(K—u)c'+cu']\,K—u+c
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so that
lim
Zy 7 Zg (A-C) = 0
and
lim lim
€ 0 [0@x)/PK] =D -2, 2z, E . (20)

* 2

The remaining limit consists of formally substituting Zg for
z, in (18). Then from (17) and (18)

*
axz/aK—axl/BK = [K(K-u)/[(K—u)c'+ cu’] V(K-u)z-c ]z

Z2
_j" K (K-u)[ (K-u)c”+ cu” dz €21)
2

1

> [(K—u)c’+cu']2 (K—u)z—c
1

This 1limit is used in place of the formal expression for
BXZ/BK - axl/BK. The first term of (14) is acceptable since
it is evaluated at z; where K #u + ¢. The integral term is
acceptable because, though improper, it may be evaluated under
almost the same circumstances as the integral for Xg = X4
itself. We are not concerned in the above with the case ¢'=u’'= 0
since under these circumstances the ray concerned may not have

its reflection level at Zg .
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SPECIAL CASE U =

The presence of u(z) complicates the arithmetic of the
above reduction. When u(z) ® 0, the situation is straight-
forward. We consider only the case of reflection at z, so
that with z, = z, - € one obtains Zy

d (Ax)/3K = c/ K2 ](az /3K) +f[a(c/\/ Kz—c )/3K]d=.

2y

Snell's Law at the reflection level is ¢ = K so that
3z,/3K = 1/c’ and so, differentiating the integrand
Zyg
3 (Ax) /3K = c/c'VKZ-c2 1,, -Jf[cK/(Kz-c2 3/2 4,

Z

Note that d[(Kz-c2 - 1/Zfl/dz = cc’/(K.z—c2 3/2 so that
the integrand may be written in as

GK/c')[d(K—c)_%/dz].

Integrating by parts

Z
[e/c’ VKz—czjz - [K/c'VKz-cz ]
f[Kc”/(c) Vk2-c21d4z

= [ \/K-c/c’' VK+c]. + K/c'’ VKz-cz -
f[Kc”/(c )2 V c?] az .

9 (Ax) /9K

The first term vanishes for z, ~ Zg. The result in the limit is
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z
2
sz/aK-axl/aK = k/c’ Kz—cz] -f[Kc”/ (c')2 Kz—cz] dz
z
1

%1

which checks the previous result for u(z) = 0.
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THE TIME DERIVATIVES

The evaluation of 37/9K also requires the consideration

of the same details. The time to traverse the layer Zys Zg is

Zo
To = 71 =f[K—u)/c V (K-_u)?"-c2 ] dz

21

If the ray is not reflected at Zgs then Zg is independent of

Snell's constant, K,
Z

o7 ,/3K-3T ) /K = -f {e/[ (K-u)2-

Z

2_.2 3/2}dz. (22)

1

To obtain the result in the case the ray is reflected at the

level Zgy W€ integrate to the level z, = zz—E. This level will

depend on the Snell's constant K via zz(K). Thus one has
a1 /3K-31 /3K = [ (K-u)/c "\ K-u)?-c?] (32, /%K)
- zZ
%

f {e/l (K—u)2 2 3/2} dz

now since K = u(z,) + c(z,) for the reflected ray, Bz*/aK=1/(c'+u')jz*

and the integrand of the last term is rewritten using

dl (K-u)/ \/(K—u)z—c 1/dz= c[ (K-u)c’ +cu ]/[(K-u)2 2]3/2

to give

BT*/BK—BTl/BK = [ ®-u)/c(c’'+u’) V(K—u)2 z]z
E3

Zy

_f_l__ 2 [ ke >
d
. K-u)c '’ +cu’ “ \ V(K-u)2 —c2 dz .

1
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Integrating by parts and collecting terms evaluated at z_ together

E

a'r*/aK-a'rl/aK= [cf (K-u)'VK-u—c/E c’'+u’) [ (K-u)c'+cu']VK-u+c]z*
+E®-u)/[ K-=u)ec’+cu’] V(K—u)z—cz:]z

1

z
* (K-u) [ (K-u)c”+cu”’]
_f -—dz

[ (K-u)c'+cu']2 (K—u)z-c2

21

Then for zZ, "~ z2 or € % 0 the first term becomes zero with
the result that

BTZ/BK-BTI/BK = (K-u)/L (K—u)c'+cu'] V (K-u)z-czlZl

Z* "
_/‘ K-u)[K-u)c’+cu”] dz (23)

ot L (K—u)c'+cu']2 \/(K-u)z—cz
1
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SUMMARY

The focus factor for estimating sound intensity is given

by the more general expression
f = chosm / [rar/am ] sin®
o’ | oJ T P
where

[rar/acpo ] p =T [ ar/3p - (37/39_) (WBr/BZ+Ué)/(l+WBT/bZ)]

stands for the usual expression but corrected for simultaneous
time of arrival of the sound rays at the ground. The re-

maining symbols are

R = distance of source (at emission time) to receiver
(at reception time)
@o = initial ray inclination angle

Z = source altitude
r = horizontal projection of the radial source-receiver
distance, R
® = ray inclination at the ground
T = sound travel time
Ue = horizontal component of source velocity in propagation
plane

w vertical source velocity component

All of the partial derivatives ar/awo, dT /3w, or/dZ, OT/IZ are
obtained from the ray tracing results in usual form (i.e., the

fact that the rays do not arrive simultaneously is ignored).
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The radial distance and travel time are obtained from

layer wise addition of the layer integrals

z
2
ro=ry =./r [[c2+a(K-u)] /c\/(K-a)z-c }dz

AI‘:
%
z
2
2 2
AT = To=Tq = (Ku/c Y K-u)-c dz
21
where K is the Snell's law constant ffom
c/cosp + u = co/cosmO +u, =K

where ¢ is the speed of sound, u is the wind component in the
plane of propagation (both functions of altitude, Z). When
the ray is reflected, the upper 1limit of integration is obtained

from Snell's law by setting ® = 0 so that
c(zz) + u(zz) = K

and solution for Zg is required.

The derivatives with respect to both mo and Z are obtained

from derivatives with respect to K from the relations

o-/3p = (3-/3K) BK/3% ) ,

I

3-/37 (3-/3K) (3K/22),

where
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a — - 2
K/Bmo = c0s1nmo/cos Py

4 4
JK/3Z = co/cosCPo+uo .

When the ray penetrates the layer concerned,

z
3 (Ar) /3K = -f Ke/ {(K-u)z-cz ] 3/2, dz
1
and
Zo
d (AT) /3K = —/{c/[(K—u)z-cz ]3/2 dz
2y
or

3 (Ar)/9K = K (0 (AT)/3K).

When the ray is reflected at the upper boundary of the
layer, these integrals cannot be evaluated. The resulting

integrals are substituted:

3 (Ar)dK = [K(K-u)/ [ (K-u)ctecu’ W(K-u)z—cz]

_fzz K (K-u) [ (K-u)c” +cu”]

, —— dz,
[(K—u)c'+cu']21kK—u)2—c2 “

2

Z

and
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3(AT)/3K = (K-u)/ [(K—u)c'+ cuﬂv (]K'u)z—c2 ]z/

z
2
(K-u) [(K-u)c + cu”

;‘1/- [(K-u)c + cu] V K—u) —c

and again
3 (Ar) /3K = K [ 2 (A7) /2K ]

The ray tracing quantities to be calculated are then r,

T, OT/OK with the additional quantities coming from

3T /dp= (aT/aK)(aK/awo),

dT /3% (d7/9K) (3K/27Z),

dr/d37 = K(3T/3K) (OK/OZ).
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SHORT-CUTTING THE RAY TRACING ROUTINE

The process outlined for calculation of rays requires ray
calculation for altitudes Zo from the surface upward as sep-
arate operations. There is a possibility of shortening the

calculations somewhat.

When one is dealing with an atmosphere made up of hori-
zontally homogeneous layers the ray path is uniquely determined
by the conditions at the start of a ray through the layers.
Consider the source with elevation Zo at some level say Zy
and that rays have been computed through Zy 92y _19=="129,%1,2Z
= surface level = 0. Now consider the source at Zo on some
other level zL,& > k. It is required to calculate the ray
through the levels Zps===3Zpr===3Z1,% .

In the first ray calculations at level Z0 = Zys the rays

k

have been calculated with initial elevation angles wgl,-—-,mon,

where n is the number of elevation angles used. These rays

extend to the ground.

The second calculation with Zo = Zy requires the rays for

L

om’ These rays are then calculated

elevation angles wﬁl,—--,m
to the level Zye » The calculated data will consist of the
horizontal travel Xk the time, TLk’ and the phase normal ka.
The phase normals may now be compared with the phase normals
. . k k
i < <
of the previous calculations. If m1n6$oi) mk& max0$oi), that

is if ka lies within the range of angles wgi used to start

rays at level Zyes then the remaining horizontal travel and



- 78 -

time of travel may be calculated by interpolation., Thus, if

k

0i+l? then the remaining horizontal travel

k
< <
we have moi $k& )
and time of travel for the ray be obtained by interpolation
between the corresponding quantities associated with the values
k k

Poq 30d @5 q-

When ¢i& lies outside this range, then the calculations

for the individual ray must be continued to the surface.

The continued use of the interpolation procedure for
successively higher levels of the source Zo requires that
suitable precautions be taken to avoid loss of accuracy.
Internal machine numbers usually contain far more significant
digits than the situation really warrants. These, together
with a reasonably high order interpolation formula (i.e., one
that uses several values of wgi in the interpolation.process)
should suffice to preserve a reasonable degreé of accuracy.
Linear interpolation will probably result in quickly accumu-
lated errors. In any case, a sophisticated interpolation will
be more efficient than continuation of the ray tracing through
the lower layers. An occasional check by comparing interpolated
values with a complete ray trace should serve to keep errors
under positive control and determine when the point of excessive
error has been reached. At this point the rays can be all

traced in detail again and the process resumed with fresh values.
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